智简编码传输赋能高的效稳健通信

戴金晟

泛网无线通信教育部重点实验室国家人工智能产教融合创新平台

被关注的问题

序号	问题类型	具体问题	当前结论
1	应用场景	高时效智简编码传输当前主要用来解决哪些场景的通信问题?	
2	技术领域	智简编码传输究竟是压缩问题,还是传输问题?	
3	技术领域	联合信源信道编码 (JSCC) 是否等同于语义通信?	
4	技术性能	基于 AI 的 JSCC 性能是否比工程上已应用的 SSCC 标准 "好"?	
5	科学问题	智简传输系统的核心增益来源在哪?是否会超越香农限?	
6	技术问题	JSCC 落地应用会面临哪些阻力?如何克服?	
7	开放问题	智简传输与智简网络是怎样的关系?	
8	开放问题	大模型等 AI 新技术,和智简通信有什么关联?	

信源侧: 高实时、大容量通信业务快速增长

□ 新实时通信 RTC 业务带来新需求

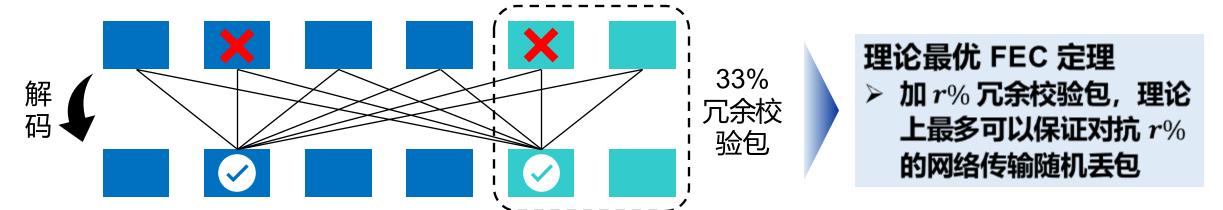

▶ 下载与存储业务: "高效率压缩 + 高可靠传输"可以较好支持

> 交互会话业务: 高实时、低开销

> 直播推流业务: 高实时、高并发

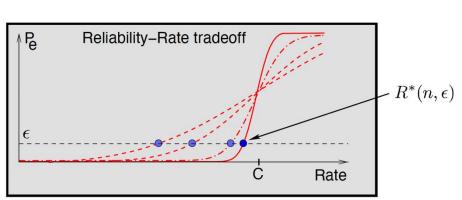
现实情况: 网络/信道状态高动态变化 大容量业务难以实现高实时稳健传输


低时延与高可靠是固有矛盾



网络/信道侧:前向纠错 FEC 带宽开销高

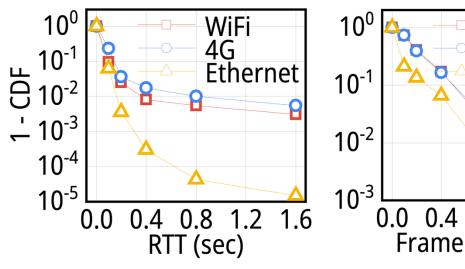
□ FEC 理论

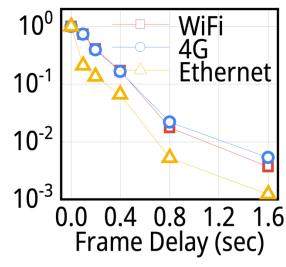

➤ 若提前预知**网络传输丢包率**,可以通过**包级别 FEC 对抗网络丢包**

➤ 若提前预知**信道传输信噪比**,可以通过**比特级 FEC 对抗信道衰落**

$$R^*(n,\epsilon) = C - \sqrt{rac{V}{n}}Q^{-1}(\epsilon) + \mathcal{O}igg(rac{\log n}{n}igg)$$
 $R = rac{k}{n} \leq R^*(n,\epsilon)$

网络/信道侧:前向纠错 FEC 带宽开销高


□ 发送端前向纠错 FEC 增加带宽冗余:FEC 编解码效率低

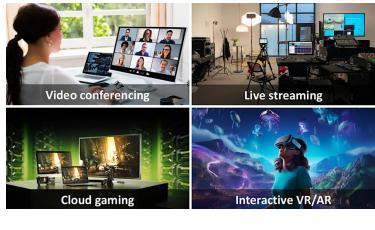

FEC 编码类型	典型应用场景	抗丟包恢复能力	解码复杂度	RTC 适用性
Reed-Solomon (RS)	深空通信	理论最优 (MDS)	0(n²) 或 0(n ^k) (高解码复杂度)	基本不适用 (受包数量和计算资源限制)
LDPC	WiFi, DVB	接近理论最优	$O(n)$ 或 $O(n \log n)$	特定设计,部分场景适用
XOR 奇偶校验	RTC (ULP-FEC, Flex-FEC 等)	无法接近理论最优	O(k) (只与数据包数量 k 有关)	目前 RTC 主要应用的 FEC 编码方式

- ➤ RTC 常用的 ULP-FEC 和 Flex-FEC 编码方式采用包级别 XOR 奇偶校验,虽然性能不能接近理论最优,但复杂度低,对 RTC 应用友好
- \triangleright 结论: 实用化 FEC 编码效率不足,无法做到"加r% 抗r%",即便确知网络传输丢包率,实际加入冗余量也远大于丢包率

网络/信道侧:后向纠错 ARQ 时延难保障

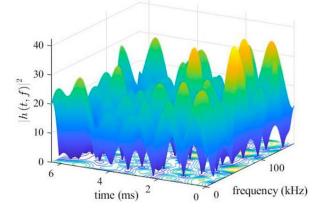
接收端后向纠错 ARQ 增加时间冗余:尾部时延难降低

Narayanan et al.	Tail latency of the 5G hop does not improve
(2020) [51]	against 4G, and could be around 200ms.
Daldoul et al.	802.11ax (a.k.a. WiFi 6) has an average WiFi-hop
(2020)[22]	latency of $>$ 30ms with 30 interferers.
Bhartia et al.	More than one quarter of 802.11ac access points
(2017) [15]	sufferfrom a latency of >100ms at the last hop.

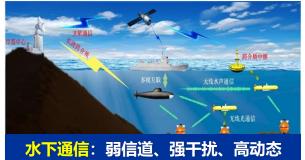

无线网络传输时延: 5G 相较于 4G 的平 均时延显著降低,但尾部时延没有改善

- > ARQ 的时延需求与业务类型高度关联,RTT 与应用场景和网络状态高度关联
- 一个正确到达却"**迟到"的数据包**,对 QoE 的损害与一个丢失的数据包无异
- ➤ 一次 ARQ 使数据包交付时间增加至少一个 RTT, "三向延迟"合计易超过 150 ms, 部分时延要求苛刻的交互式 RTC 业务"难应用 ARQ 技术"

[R] Meng, Zili, et al. "Achieving consistent low latency for wireless real-time communications with the shortest control loop." Proceedings of the ACM SIGCOMM 2022 Conference, 2022.

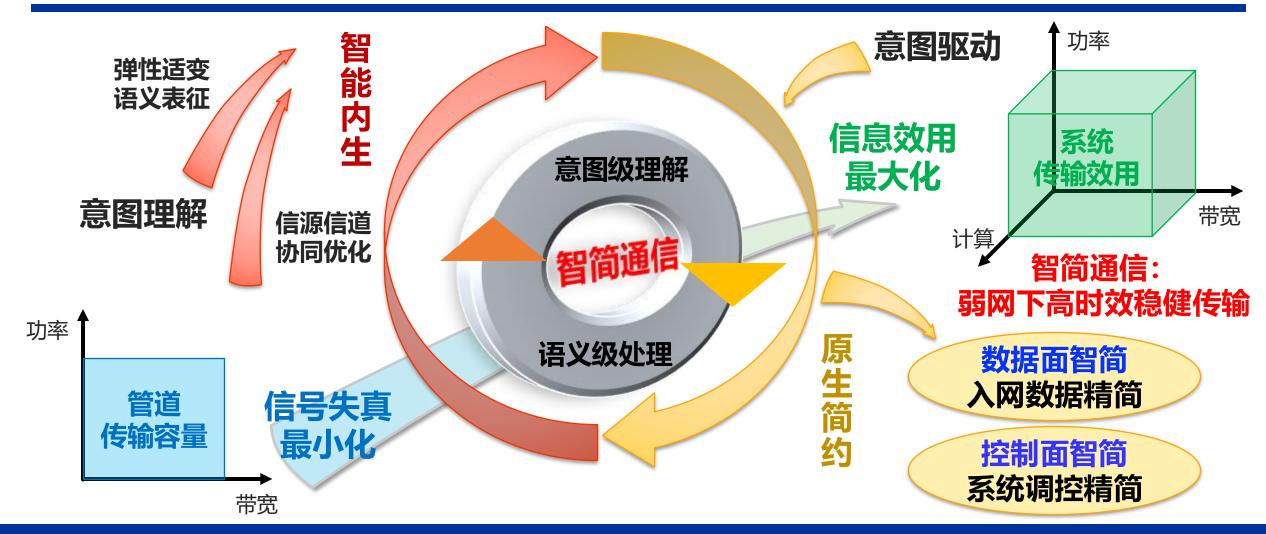

高时效稳健通信需求迫切

动态弱网下,通信系统参数调控滞后环境变化,业务难以实现高时效稳健传输

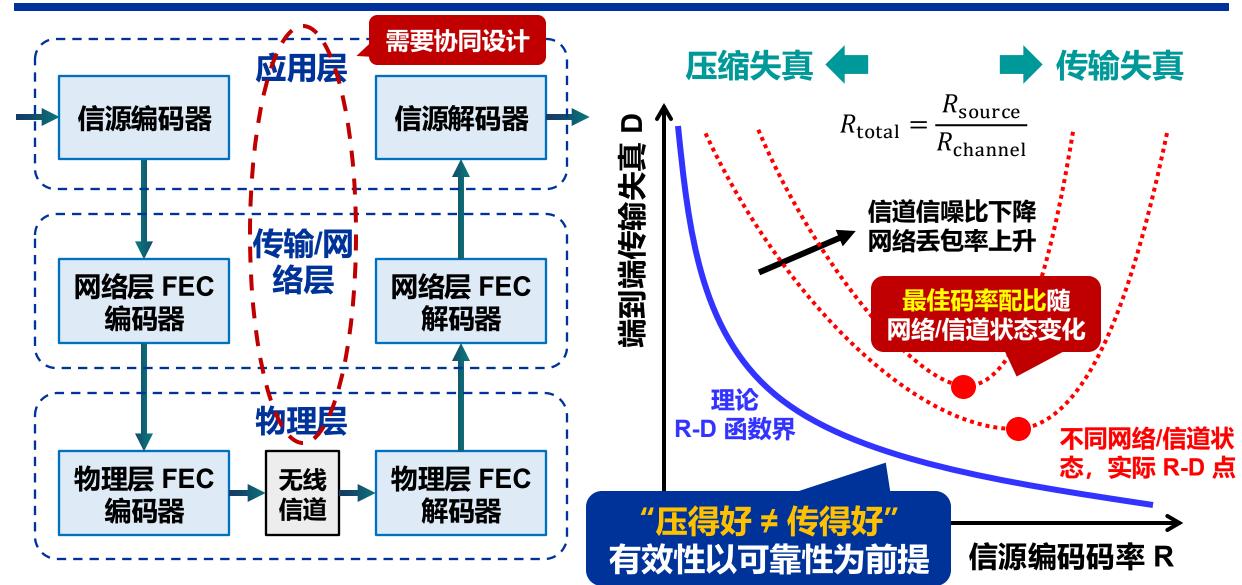


信源侧:高 实时、大容 量通信业务 快速增长

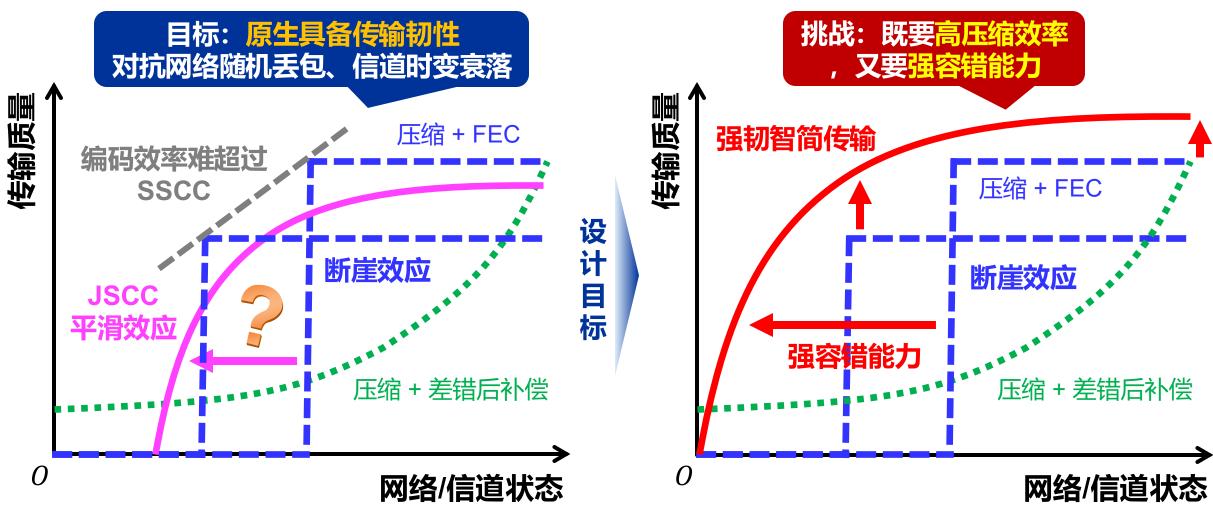
业务传输 稳健性弱 时效性差 网络/信道侧: 带宽不足、状 态波动大,难 以准确预测



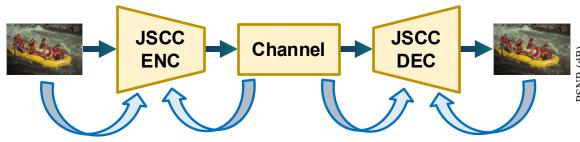
传统通信发展进入瓶颈, 动态弱网下的高时效稳健传输需求引领通信理论与技术创新


智简通信的设计目标

为建立"高时效、高可靠、高有效"的信息通信系统奠定理论与技术基础



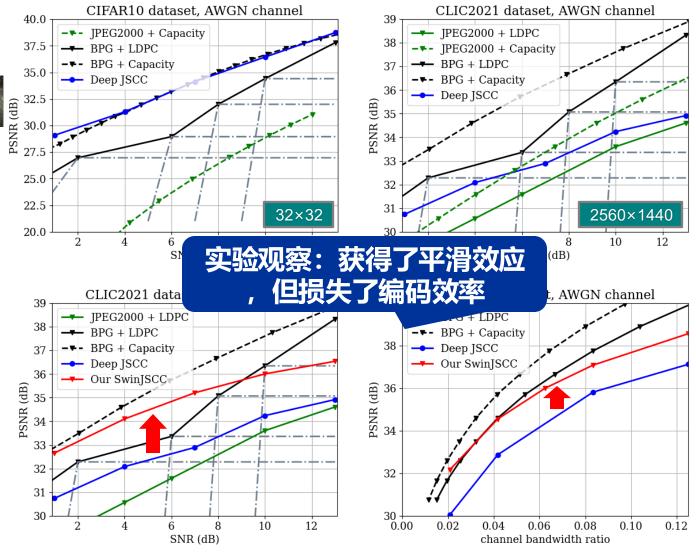
端到端传输失真 = 压缩失真 + 传输失真


关键难点 — 高效压缩 + 强韧容错

□ 现实挑战: "压缩能力"与"容错能力"难兼得

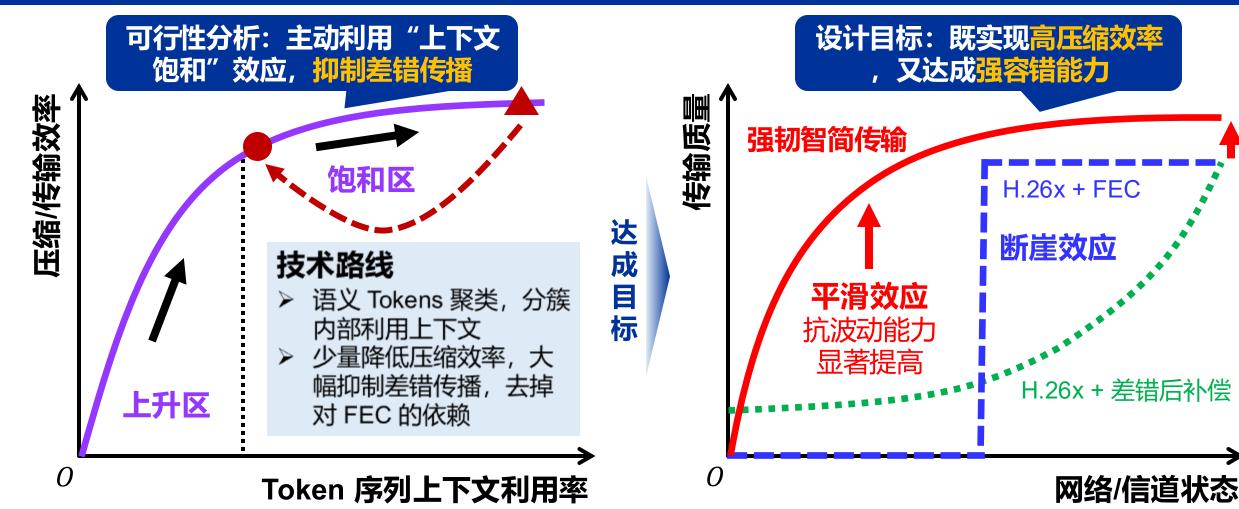
实验观察: JSCC 性能不容易超过 SSCC

带有噪声瓶颈训练的自编码器

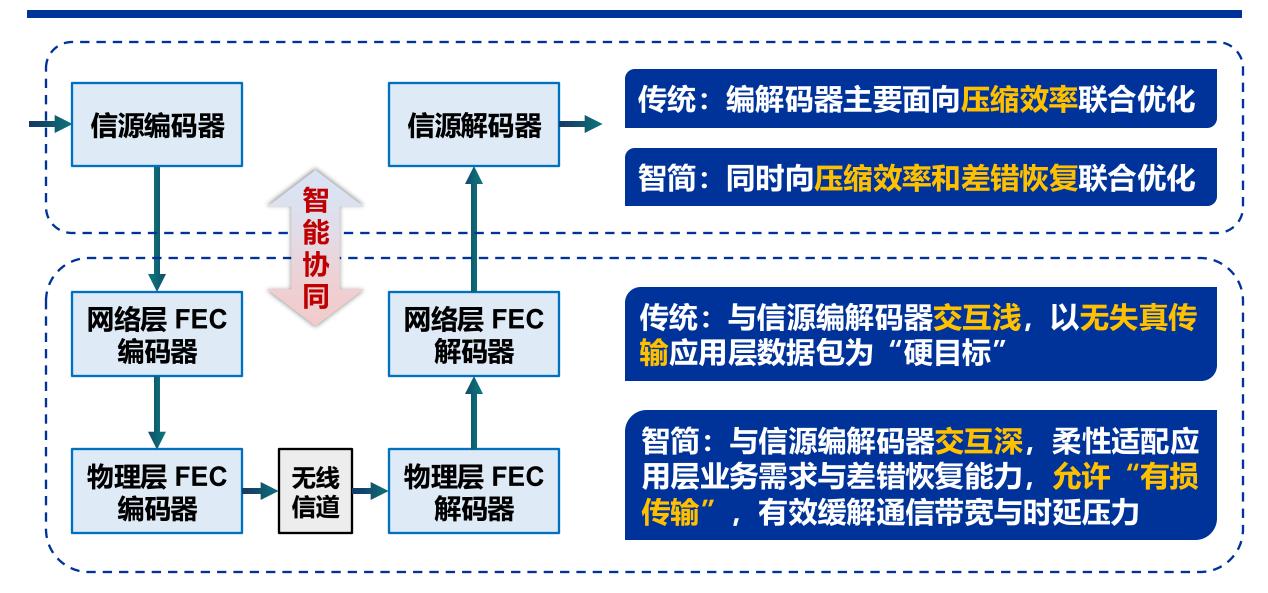


信道状态感知的端到端联合优化

端到端联合优化能否真正解决问题?

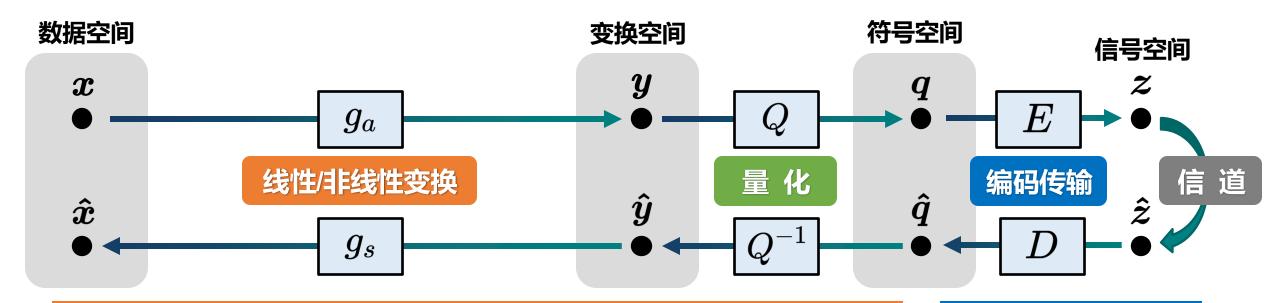

[1] E. Bourtsoulatze, D. Burth Kurka and D. Gündüz, "Deep Joint Source-Channel Coding for Wireless Image Transmission," in *IEEE Transactions on Cognitive Communications and Networking*, vol. 5, no. 3, pp. 567-579, Sept. 2019, doi: 10.1109/TCCN.2019.2919300.

[2] K. Yang, S. Wang, J. Dai, X. Qin, K. Niu and P. Zhang, "SwinJSCC: Taming Swin Transformer for Deep Joint Source-Channel Coding," in *IEEE Transactions on Cognitive Communications and Networking*, doi: 10.1109/TCCN.2024.3424842.



可行性分析 — 能够利用数据冗余获得容错能力

"被动添加校验冗余→主动利用数据冗余"范式转变,实现强韧稳健传输



智简思路 — 主动利用先验,对抗传输损伤

传统编码传输 — 总体流程

□ 传统编码传输系统

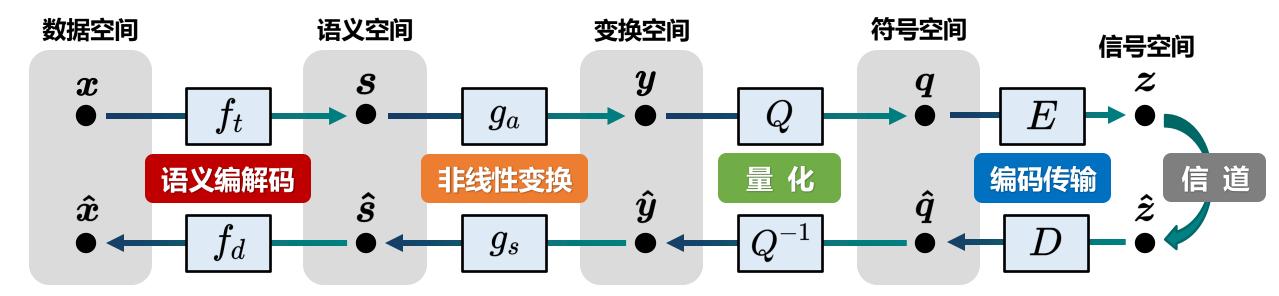
变换空间压缩信息量

 $H(x) \gg H(q)$

信息量有较大损失

【体现信源数据压缩能力】

传输失真


 $H(\boldsymbol{q}|\hat{\boldsymbol{z}}) > 0$

信息传输有失真

【符号丢失或失真】

智简编码传输 — 总体流程

□ 联合信源信道编码 JSCC ≠ 语义通信

语义空间压缩维度

 $\dim(x) > \dim(s)$

信息量略有损失

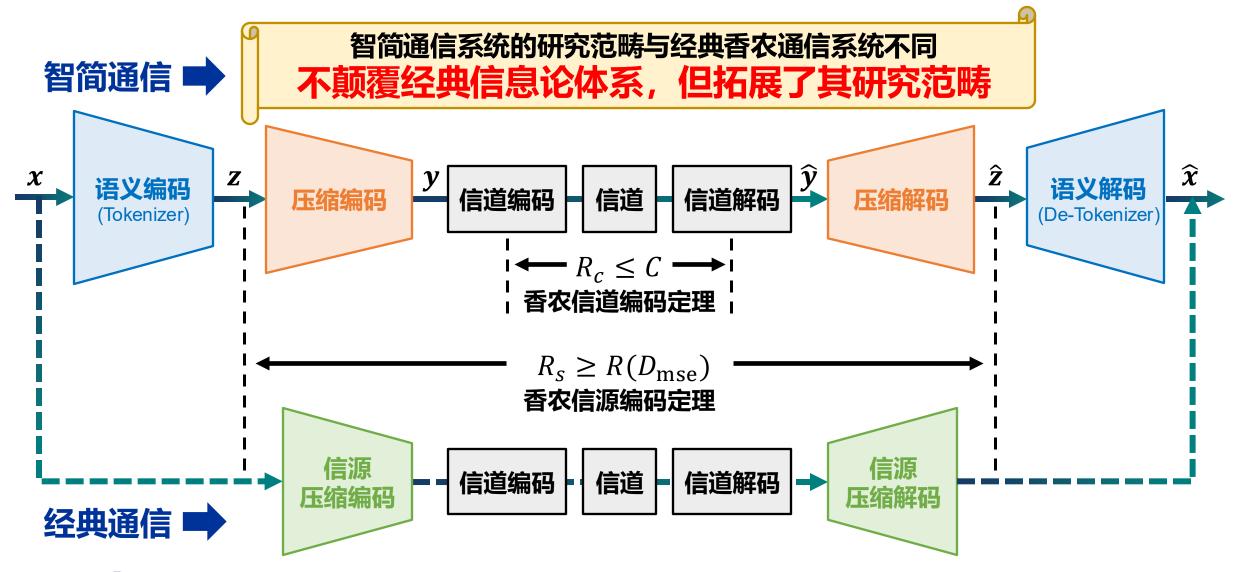
[H(x) > H(s)]

变换空间压缩信息量

 $H(s) \gg H(q)$

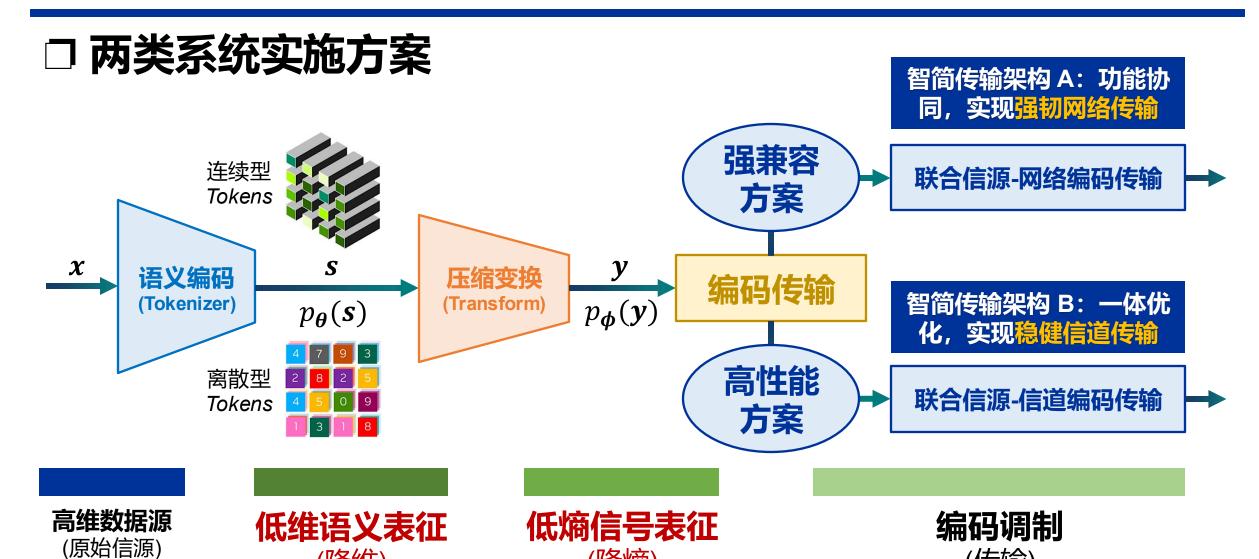
信息量有较大损失

【体现Token信息压缩能力】


传输失真

 $H(\boldsymbol{q}|\hat{\boldsymbol{z}}) > 0$

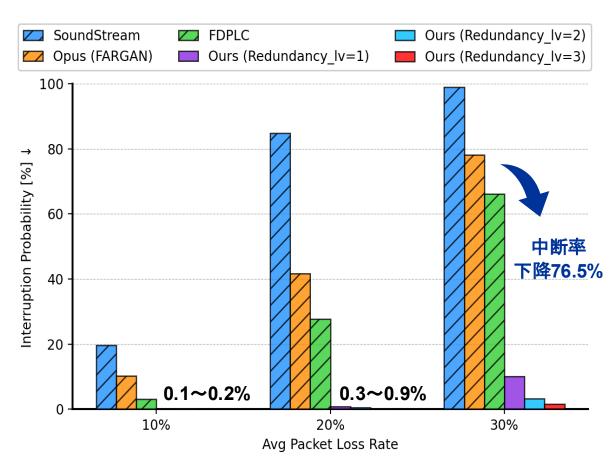
信息传输有失真

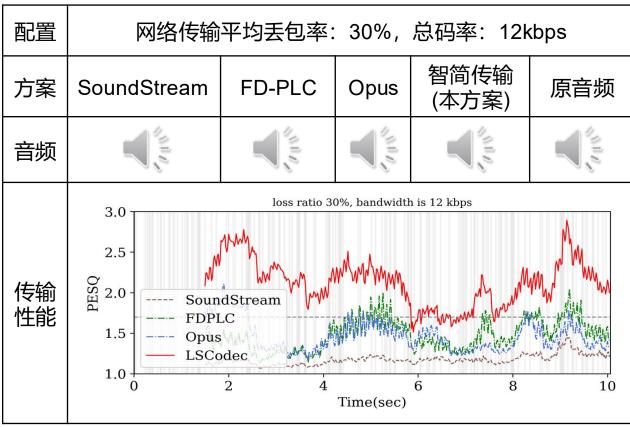

【Token丢失或失真】

智简编码传输 vs. 经典编码传输

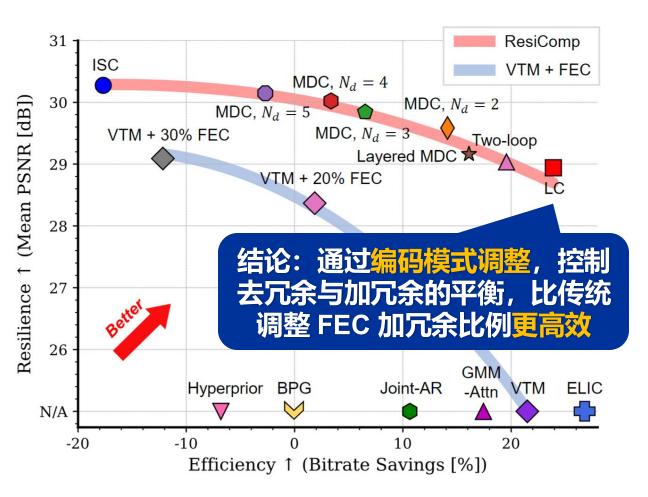
智简编码传输 — 具体实施方案

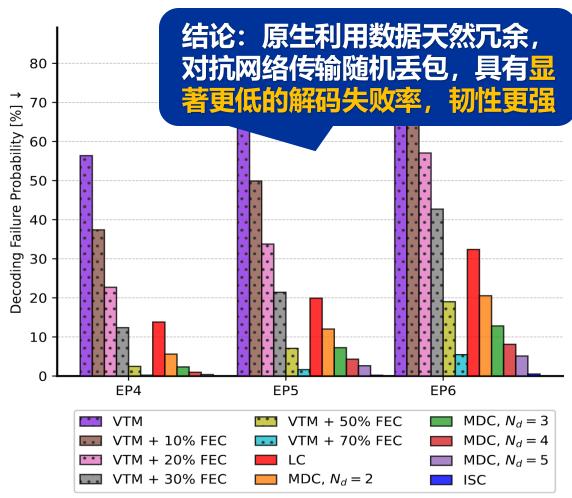
(降维)

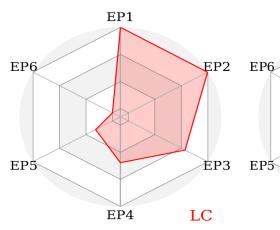

(降熵)

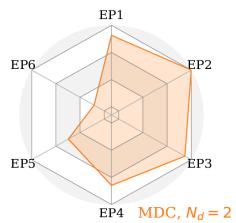

(传输)

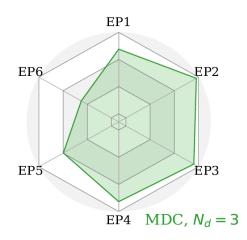
音频/语音的"强韧网络传输"

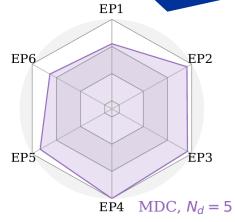

□ 动态随机丢包网络环境下,实现高实时、强韧性音频/语音传输

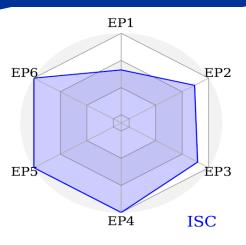

> 主要特点: 低带宽开销、高保真恢复、强韧抗网络传输随机丢包、低重传开销

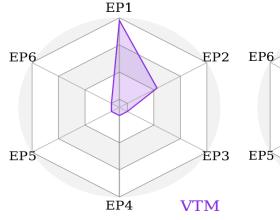


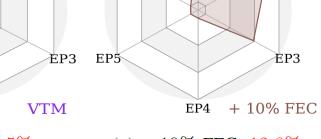

□ 动态随机丢包网络环境下,实现高实时、强韧性视频/图像传输

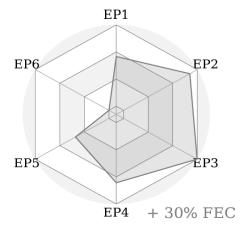


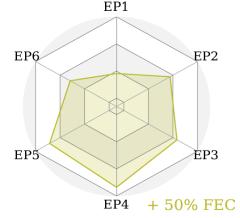


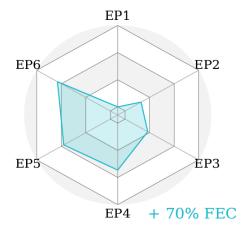

结论: 原生抗丢包的 ResiComp Codec 能够适配更广的丢包分布




(a) LC, 23.9%


EP2


(b) MDC $(N_d = 2)$, 14.1% (c) MDC $(N_d = 4)$, 6.5% (d) MDC $(N_d = 5)$, -2.7% (e) ISC, -17.7%


(e) ISC,
$$-17.7\%$$

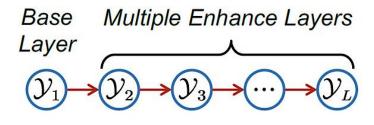
(h) +
$$30\%$$
 FEC, -12.2%

(i) + 50\% FEC,
$$-57.0\%$$

(f) VTM, $\frac{21.5\%}{21.5\%}$ (g) + $\frac{10\%}{10\%}$ FEC, $\frac{12.8\%}{12.8\%}$ (h) + $\frac{30\%}{10\%}$ FEC, $\frac{-12.2\%}{12.2\%}$ (i) + $\frac{50\%}{10\%}$ FEC, $\frac{-57.0\%}{10\%}$ (j) + $\frac{70\%}{10\%}$ FEC, $\frac{-161.7\%}{10\%}$

有效性与可靠性的权衡靠不同编码模式进行调节

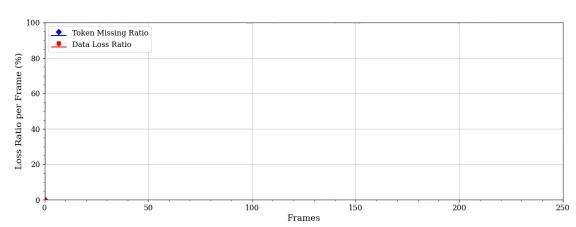
Base Layer Only



(a) Intra-slice coding (ISC)

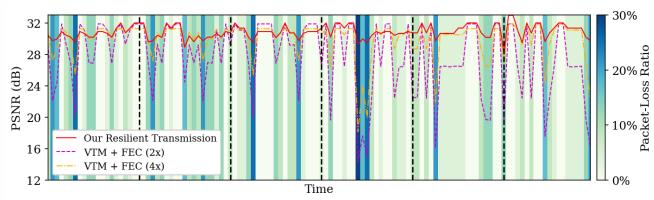
(b) Layered coding (LC)

(c) Multi-description coding (MDC)

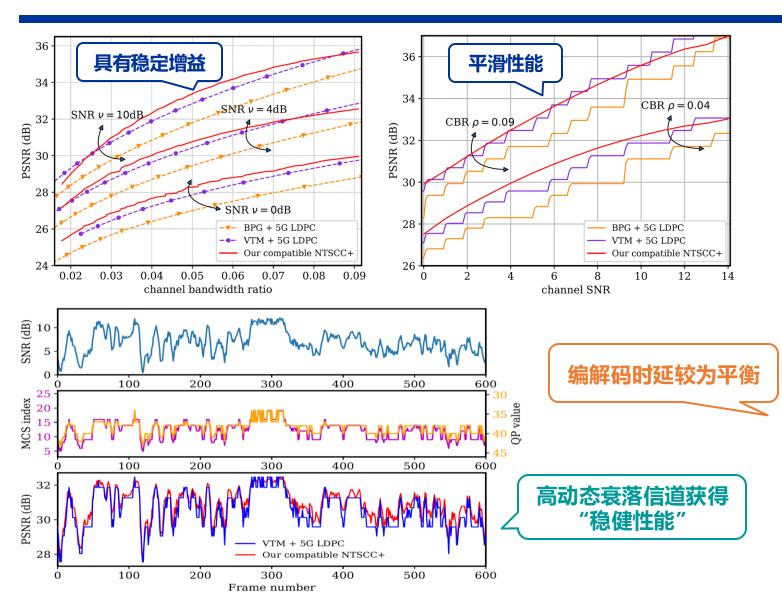

不同编码模式的综合性能

结论:数据天然冗余 容错性价比高

ResiComp 编码模式	抗随机丢包能力	编码效率 (BD-rate vs. H.265)
Slice 独立编码 (ISC)	强 ,无丢包差错传播	17.7%
多描述编码 (MDC)	较强 ,每个描述可独立恢复,部分描述丢失仍可解码	- 14.1% ~ 2.7% (描述数量降低,效率降低)
分层渐进编码 (LC)	弱 ,前缀重要,初始包丢失影响较大	-23.9% (≈H.266)



智简编码传输



100 SARAR SA

传统编码传输

视频/图像的"稳健信道传输"

相较于 "VTM + 5G 传输" 的带宽开销节省

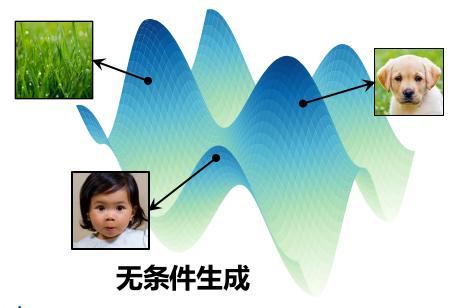
Coded transmission scheme	Kodak	CLIC21
JPEG + 5G LDPC	186.09%	586.31%
JPEG2000 + 5G LDPC	94.24%	323.11%
BPG + 5G LDPC	23.93%	55.43%
VTM + 5G LDPC	0%	0%
Ballé <i>et al.</i> + 5G LDPC	31.79%	47.71%
Minnen et al. + 5G LDPC	11.94%	11.65%
He et al. + 5G LDPC	6.86%	8.90%
Deep JSCC	74.87%	158.88%
NTSCC	1.33%	23.06%
Our NTSCC+	-5.86%	2.94%
Our compatible NTSCC+	-1.74%	20.94%
Our NTSCC++	-14.25%	-4.70 %

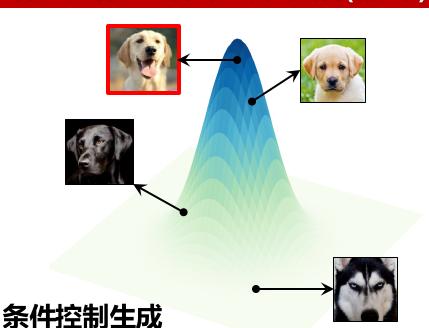
综合性能对比

Transmission scheme	BD- ρ	Params (M)	End-to-end latency (s)	
Transmission scheme	(%, ↓)		Encoding	Decoding
Minnen + 5G LDPC	11.94	14.13 †	0.046	1.7
He + 5G LDPC	6.86	26.60 †	0.087	0.15
VTM + 5G LDPC	0	? <u>!</u> ?5	65.8	0.289
NTSCC	1.33	32.94 ‡	0.036	0.015
Our NTSCC+	-5.86	57.36 ‡	0.058	0.023
Our compatible NTSCC+	-1.74	60.29	0.061	0.027
Our NTSCC++ (1 step)	-9.77	57.36 [‡]	0.6	0.023

视频/图像的"高保真稳健信道传输"

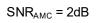
□ 条件控制生成:解码新范式


接

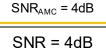

收信号引导

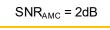
$$oldsymbol{y} = \underbrace{\mathcal{H}(\mathcal{M}(\mathcal{E}_c(\mathcal{E}_s(oldsymbol{x}))))}_{\mathcal{A}(oldsymbol{x})} + oldsymbol{n} = oldsymbol{\mathcal{A}(oldsymbol{x})} + oldsymbol{n}$$

特点: 非线性映射、时变、深衰落(强噪)



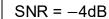
北京郵電大學 Beiling University of Posts and Telecommunications


视频/图像的"高保真稳健信道传输"


信道带宽比 ≤ 0.02 (低带宽开销)

VTM + 5G LDPC + QAM + AMC (当前应用方案)

SNR = 6dB



SNR_{AMC} = 0dB

 $SNR_{AMC} = -2dB$

g

性能指标

Content Consistency ↑

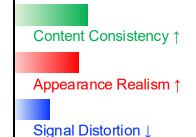
Appearance Realism ↑

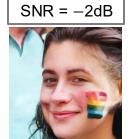
Signal Distortion

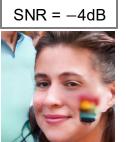
SNR = 2dB

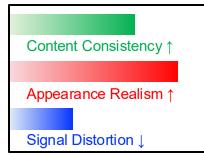
SNR = 0dB

感知优化 JSCC 传输 (**确定性解码**)




SNR = 6dB





生成式 JSCC 传输 (**随机性解码**)

被关注的问题

序号	问题类型	具体问题	当前结论
1	应用场景	高时效智简编码传输当前主要用来解决哪些场景的通信问题?	解决"三高"难题
2	技术领域	智简编码传输究竟是压缩问题,还是传输问题?	主要是传输问题
3	技术领域	联合信源信道编码 (JSCC) 是否等同于语义通信?	不等同
4	技术性能	基于 AI 的 JSCC 性能是否比工程上已应用的 SSCC 标准 "好"?	不一定,不同评价维 度不一样
5	科学问题	智简传输系统的核心增益来源在哪?是否会超越香农限?	多级先验知识;不会 超过
6	技术问题	JSCC 落地应用会面临哪些阻力?如何克服?	跨层协同难:浅协同 容易,深度协同难
7	开放问题	智简传输与智简网络是怎样的关系?	降低网络负载,释放 网络调控压力
8	开放问题	大模型等 AI 新技术,和智简通信有什么关联?	开放问题

已发表相关学术论文

- ① J. Dai, S. Wang, K. Tan, Z. Si, X. Qin and P. Zhang, "Nonlinear Transform Source-Channel Coding for Semantic Communications," in *IEEE Journal on Selected Areas in Communications*, vol. 40, no. 8, pp. 2300-2316, Aug. 2022. **(ESI HC)**
- 2 S. Wang, J. Dai, Z. Liang, K. Niu, Z. Si, C. Dong and P. Zhang, "Wireless Deep Video Semantic Transmission," in *IEEE Journal on Selected Areas in Communications*, vol. 41, no. 1, pp. 214-229, Jan. 2023. **(ESI HC)**
- 3 J. Dai, S. Wang, K. Yang, K. Tan, X. Qin and P. Zhang., "Toward Adaptive Semantic Communications: Efficient Data Transmission via Online Learned Nonlinear Transform Source-Channel Coding," in *IEEE Journal on Selected Areas in Communications*, vol. 41, no. 8, pp. 2609-2627, Aug. 2023.
- 4 S. Wang, J. Dai, X. Qin, Z. Si, K. Niu and P. Zhang, "Improved Nonlinear Transform Source-Channel Coding to Catalyze Semantic Communications," in *IEEE Journal of Selected Topics in Signal Processing*, vol. 17, no. 5, pp. 1022-1037, Sept. 2023.
- 5 J. Dai, X. Qin, S. Wang, L. Xu, K. Niu and P. Zhang, "Deep Generative Modeling Reshapes Compression and Transmission: From Efficiency to Resiliency," in *IEEE Wireless Communications*, vol. 31, no. 4, pp. 48-56, August 2024.
- 6 K. Yang, S. Wang, J. Dai, X. Qin, K. Niu and P. Zhang, "SwinJSCC: Taming Swin Transformer for Deep Joint Source-Channel Coding," in *IEEE Transactions on Cognitive Communications and Networking*, vol. 11, no. 1, pp. 90-104, Feb. 2025. (ESI HC)
- S. Yao, J. Dai, X. Qin, S. Wang, S. Wang and K. Niu, "SoundSpring: Loss-Resilient Audio Transceiver With Dual-Functional Masked Language Modeling," in *IEEE Journal on Selected Areas in Communications*, vol. 43, no. 4, pp. 1308-1322, April 2025.
- S. Wang, J. Dai, X. Qin, K. Yang, K. Niu and P. Zhang, "ResiComp: Loss-Resilient Image Compression via Dual-Functional Masked Visual Token Modeling," in *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 35, no. 7, pp. 7181-7195, July 2025.
- S. Wang, J. Dai, K. Tan, X. Qin, K. Niu and P. Zhang, "DiffCom: Channel Received Signal Is a Natural Condition to Guide Diffusion Posterior Sampling," in *IEEE Journal on Selected Areas in Communications*, vol. 43, no. 7, pp. 2651-2666, July 2025.

敬请批评指正

DeepComm Research Group

"All credits go to my students" daijincheng@bupt.edu.cn

